Petrol full HD movie download free with screenpaly story, dialogue LYRICS and STAR Cast


Watch the movie Petrol Online

Story of movie Petrol :
  • Read in another language

Gasoline

  (Redirected from Petrol)

A Shell gasoline station in Hiroshima, Japan

Gasoline (American English), or petrol (British English), is a transparent, petroleum-derived liquid that is used primarily as a fuel in spark-ignited internal combustion engines. It consists mostly of organic compounds obtained by the fractional distillation of petroleum, enhanced with a variety of additives. On average, a 42-gallon barrel of crude oil (159 L) yields about 19 US gallons (72 L) of gasoline when processed in an oil refinery, though this varies based on the crude oil source's assay.

The characteristic of a particular gasoline blend to resist igniting too early (which causes knocking and reduces efficiency in reciprocating engines) is measured by its octane rating. Gasoline is produced in several grades of octane rating. Tetraethyllead and other lead compounds are no longer used in most areas to regulate and increase octane-rating, but many other additives are put into gasoline to improve its chemical stability, control corrosiveness, provide fuel system cleaning, and determine performance characteristics under intended use. Sometimes, gasoline also contains ethanol as an alternative fuel, for economic, political or environmental reasons.

Gasoline used in internal combustion engines has a significant effect on the environment, both in local effects (e.g., smog) and in global effects (e.g., effect on the climate). Gasoline may also enter the environment uncombusted, as liquid and as vapors, from leakage and handling during production, transport and delivery, from storage tanks, from spills, etc. As an example of efforts to control such leakage, many (underground) storage tanks are required to have extensive measures in place to detect and prevent such leaks. Gasoline contains benzene and other known carcinogens.

Contents

Etymology

"Gasoline" is a North America word that refers to fuel for automobiles. The Oxford English Dictionary dates its first recorded use to 1863 when it was spelled "gasolene". The term "gasoline" was first used in North America in 1864. The words is a derivation from the word "gas" and the chemical suffixes "-ol" and "-ine" or "-ene".

However, the term may also have been influenced by the trademark "Cazeline" or "Gazeline". On 27 November 1862, the British publisher, coffee merchant, and social campaigner John Cassell placed an advertisement in The Times of London:

The Patent Cazeline Oil, safe, economical, and brilliant … possesses all the requisites which have so long been desired as a means of powerful artificial light.

This is the earliest occurrence of the word to have been found. Cassell discovered that a shopkeeper in Dublin named Samuel Boyd was selling counterfeit cazeline and wrote to him to ask him to stop. Boyd did not reply and changed every ‘C’ into a ‘G’, thus coining the word "gazeline".

"Petrol" is used in most Commonwealth countries. "Petrol" was first used as the name of a refined petroleum product around 1870 by British wholesaler Carless, Capel & Leonard, who marketed it as a solvent. When the product later found a new use as a motor fuel, Frederick Simms, an associate of Gottlieb Daimler, suggested to Carless that they register the trade mark "petrol", but by this time the word was already in general use, possibly inspired by the French pétrole, and the registration was not allowed. Carless registered a number of alternative names for the product, but "petrol" became the common term for the fuel in the British Commonwealth.

British refiners originally used "motor spirit" as a generic name for the automotive fuel and "aviation spirit" for aviation gasoline. When Carless was denied a trademark on "petrol" in the 1930s, its competitors switched to the more popular name "petrol". However, "motor spirit" had already made its way into laws and regulations, so the term remains in use as a formal name for petrol. The term is used most widely in Nigeria, where the largest petroleum companies call their product "premium motor spirit". Although "petrol" has made inroads into Nigerian English, "premium motor spirit" remains the formal name that is used in scientific publications, government reports, and newspapers.

The use of the word gasoline instead of petrol outside North America can often be confusing. Shortening gasoline to gas, which happens often, causes confusion with various forms of gas used as car fuel (compressed natural gas (CNG), liquefied natural gas (LNG) and liquefied petroleum gas (LPG)). In many countries, gasoline has a colloquial name derived from that of the chemical benzene (e.g., German Benzin, Czech benzín, Dutch benzine, Italian benzina, Russian ?????? benzin, Polish benzyna, Chilean Spanish bencina, Thai ?????? bensin, Greek ??????? venzini, Romanian benzin?, Hebrew ????? benzin, Swedish bensin, Arabic ????? binz?n, Catalan benzina). Argentina, Uruguay and Paraguay use the colloquial name nafta derived from that of the chemical naphtha.

History

The first automotive combustion engines, so-called Otto engines, were developed in the last quarter of the 19th century in Germany. The fuel was a relatively volatile hydrocarbon obtained from coal gas. With a boiling point near 85 °C (octanes boil about 40 °C higher), it was well suited for early carburetors (evaporators). The development of a "spray nozzle" carburetor enabled the use of less volatile fuels. Further improvements in engine efficiency were attempted at higher compression ratios, but early attempts were blocked by knocking (premature explosion of fuel).

United States, 1903 to 1917

During the early period of gasoline engine development aircraft were forced to use motor vehicle gasoline since aviation gasoline did not exist. These early fuels were termed straight run gasolines and were byproducts from the distillation of a single crude oil to produce kerosene which was the principal product sought for lighting in kerosene lamps. Gasoline production would not surpass kerosene production until 1916. The earliest straight run gasolines were the result of distilling eastern crude oils and there was no mixing of distillates from different crudes. The composition of these early fuels was unknown and the quality varied greatly as crude oils from different oil fields created different mixtures of hydrocarbons in different ratios. The engine effects produced by abnormal combustion (engine knocking and pre-ignition) due to inferior fuels had not yet been identified and as a result there was no rating of gasoline in terms of its resistance to abnormal combustion. The general specification of early gasolines was that of specific gravity via the Baumé scale and later the volatility (ability to vaporize) specified in terms of boiling points which would be the primary focus of the producers. These early eastern crude oil gasolines had relatively high Baumé results (65 to 80 degrees Baumé) and were called Pennsylvania "High-Test" or simply "High-Test" gasolines and these would often be used in aircraft engines.

By 1910 increased automobile production and the resultant increased gasoline consumption combined with the growing electrification of lighting producing a drop in kerosene demand created a supply problem. It appeared that the oil industry would be trapped into over producing kerosene and under producing gasoline since simple distillation could not alter the ratio of the two products from any given crude. The solution appeared in 1911 when the Burton process created thermal cracking of crude oils which increased the percent yield of gasoline from the heavier hydrocarbons and this was combined with expansion of foreign markets for the export of surplus kerosene which the domestic market no longer needed. These new thermally "cracked" gasolines were believed to have no harmful effects and would be added to straight run gasolines. There also was the practice of mixing heavy and light distillates to achieve a desired Baumé reading and collectively these were called "blended" gasolines. Gradually volatility gained favor over the Baumé test though both would be used in combination to specify a gasoline. As late as June, 1917 Standard Oil (the largest refiner of crude oil in the United States at this time) would state that the most important property of a gasoline was its volatility. It is estimated that the rating equivalent of these straight run gasolines varied from 40 to 60 octane and that the "High-Test" (sometimes referred to as "fighting grade") probably averaged 50 to 65 octane.

World War I

Prior to the American entry into World War I the European Allies were using fuels derived from crude oils from Borneo, Java and Sumatra which gave satisfactory performance in their military aircraft. With the United States entry in April, 1917, the U.S. became the principal supplier of aviation gasoline to the Allies and a decrease in engine performance was noted. Soon it was realized that motor vehicle fuels were unsatisfactory for aviation and after the loss of a number of combat aircraft attention turned to the quality of the gasolines being used. Later flight tests conducted in 1937 showed that an octane reduction of 13 points (from 100 down to 87 octane) decreased engine performance by 20% and take-off distance was increased 45 percent. If abnormal combustion were to occur the engine could lose enough power to make getting airborne impossible and a take-off roll became a threat to the pilot and aircraft. On August 2, 1917, the Bureau of Mines arranged to study fuels for aircraft in cooperation with the Aviation Section of the Signal Corps and a general survey concluded that no reliable data existed for the proper fuels for aircraft. As a result, flight tests began at Langley, McCook and Wright fields to determine how different gasolines performed under different conditions. These tests showed that in certain aircraft, motor vehicle gasolines performed as well as "High-Test" but in other types resulted in hot-running engines. Also, gasolines from aromatic and naphthenic base crude oils from California, South Texas and Venezuela resulted in smooth running engines. These tests resulted in the first government specifications for motor gasolines (aviation gasolines used the same specifications as motor gasolines) in late 1917.

United States, 1918 to 1929

Engine designers knew that according to the Otto cycle power and efficiency increased with compression ratio but experience with these early gasolines during WW I showed that higher compression ratios increased the risk of abnormal combustion producing lower power, lower efficiency, hot running engines, and could lead to severe engine damage. To compensate for these poor fuels early engines used low compression ratios and this required relatively large, heavy engines to produce limited power and efficiency. The Wright Brothers first engine used a compression ratio as low as 4.7 to one and developed only 12 horsepower from 201 cubic inches and weighed 180 pounds. . This was a major concern for aircraft designers and the needs of the aviation industry led the search for fuels that could be used in higher compression engines.

Between 1917 and 1919 the amount of thermally cracked gasoline utilized almost doubled. Also, the use of Natural gasoline increased greatly. During this period many states established specifications for motor gasoline but none of these agreed and were unsatisfactory from one standpoint or another. Larger oil refiners began to specify unsaturated material percentage (thermally cracked products caused gummming in both use and storage. See Saturated and unsaturated compounds and unsaturated hydrocarbons are more reactive and tend to combine with impurities leading to gumming). In 1922 the government published the first specifications for aviation gasolines (two grades were designated as "Fighting" and "Domestic" and were governed by boiling points, color, sulphur content and a gum formation test) along with one "Motor" grade for automobiles. The gum test essentially eliminated thermally cracked gasoline from aviation and thus aviation gasolines reverted back to fractionating straight-run naphthas or blending straight-run and highly treated thermally cracked naphthas. This situation persisted until 1929.

The automobile industry reacted to the increase in thermally cracked gasoline with alarm. Thermal cracking produced large amounts of both mono- and diolefins (unsaturated hydrocarbons) which increased the risk of gumming. Also the volatility was decreasing to the point that fuel did not vaporize and was sticking to spark plugs and fouling them, creating hard starting and rough running in winter and sticking to cylinder walls, bypassing the pistons and rings and going into the crankcase oil. One journal stated, "...on a multi-cylinder engine in a high-priced car we are diluting the oil in the crankcase as much as 40 percent in a 200-mile run, as the analysis of the oil in the oil-pan shows." Being very unhappy with the consequent reduction in overall gasoline quality the automobile manufacturers suggested imposing a quality standard on the oil suppliers. The oil industry accused the automakers of not doing enough to improve vehicle economy and this became known within the two industries as ‘The Fuel Problem’. Animosity grew between the industries, each accusing the other of not doing anything to resolve matters and relationships deteriorated. The situation was resolved when the American Petroleum Institute (API) initiated a conference to address ‘The Fuel Problem’ and a Cooperative Fuel Research (CFR) Committee was established in 1920 to oversee joint investigative programs and solutions. Apart from representatives of the two industries the Society of Automotive Engineers (SAE) also played an instrumental role with the American Bureau of Standards being chosen, as an impartial research organization, to carry out many of the studies. Initially all the programs were related to volatility and fuel consumption, ease of starting, crankcase oil dilution and acceleration.

As early as 1917-1918, researchers such as Gibson, Ricardo, Midgely and Boyd began to investigate abnormal combustion and this led to the discovery in the 1920s of antiknock compounds, the most important being that of Thomas Midgley Jr. and Boyd, specifically tetraethyllead (TEL). This innovation started a cycle of improvements in fuel efficiency that coincided with the large-scale development of oil refining to provide more products in the boiling range of gasoline.

The Leaded Gasoline Controversy, 1924-1925

With the increased use of thermally cracked gasolines came an increased concern over its effects on abnormal combustion and this led to research for antiknock additives. Beginning in 1916 Charles F. Kettering began investigating additives based on two paths, the "high percentage" solution where large quantities of ethanol were added and the "low percentage" solution which led to the discovery of tetraethyllead (TEL) in December, 1921 where only 2-4 grams per gallon were needed. Ethanol could not be patented but TEL could so Kettering secured a patent for TEL and began promoting it instead of other options. The dangers of lead were well established by then and Kettering was directly warned by Robert Wilson of MIT, Reid Hunt of Harvard, Yandell Hende

Release Date :
12:00am on Friday 27th May 2005

Watch movie Petrol online on Amazon

Watch movie Petrol online

Watch The Movie On Prime

A Wednesday Full HD Movie Download

A Wednesday Full HD  Movie Download

Dombivli Fast Full HD Movie Download

Dombivli Fast Full HD  Movie Download

Meri Biwi Ka Jawab Nahin Full HD Movie Download

Meri Biwi Ka Jawab Nahin Full HD  Movie Download

Kabhi Socha Bhi Na Tha Full HD Movie Download

Kabhi Socha Bhi Na Tha Full HD  Movie Download

Meri Adalat (2001) Full HD Movie Download

Meri Adalat (2001) Full HD  Movie Download

Nastik (1954) Full HD Movie Download

Nastik (1954) Full HD  Movie Download

Chak Jawana Full HD Movie Download

Chak Jawana Full HD  Movie Download

Asa Mi Tasa Mi Full HD Movie Download

Asa Mi Tasa Mi Full HD  Movie Download

Kanteerava Full HD Movie Download

Kanteerava Full HD  Movie Download

Family Full HD Movie Download

Family Full HD  Movie Download

Porkkaalam Full HD Movie Download

Porkkaalam Full HD  Movie Download

Seema Simham Full HD Movie Download

Seema Simham Full HD  Movie Download

Aaryan Full HD Movie Download

Aaryan Full HD  Movie Download

Bharatamlo Arjunudu Full HD Movie Download

Bharatamlo Arjunudu Full HD  Movie Download

Gharana Alludu Full HD Movie Download

Gharana Alludu Full HD  Movie Download

Dongalaku Saval Full HD Movie Download

Dongalaku Saval Full HD  Movie Download

Prema Gola Full HD Movie Download

Prema Gola Full HD  Movie Download

Peda Rasi Pedamma Katha Full HD Movie Download

Peda Rasi Pedamma Katha Full HD  Movie Download

Japanil Kalyanaraman Full HD Movie Download

Japanil Kalyanaraman Full HD  Movie Download

Rocket Singh: Salesman of the Year Full HD Movie Download

Rocket Singh: Salesman of the Year Full HD  Movie Download

Aaja Nachle Full HD Movie Download

Aaja Nachle Full HD  Movie Download

Petrol"/

Download latest Movie from bollywood


The valuable critic review of movie Petrol is availeble for download
As PCDS members You can use other service that depends on your credit balance and availability of movie. Credit balance earnig is very easy you can earn by using service of the pcds or let to your friends know about this.

Request for Download movie Petrol

Are you looking for work in Movie in the bollywood ?
Type of works in bollywood like Actor,  Actress, singer, director, scriptwriter, Model, Play Back Singers, Script writer, Dialogue Writer, Audiography, Background Music, Costume Designer, Choreographer or junior artist
Then Fill The below form for get the chance in bollywood Industries as newcomers
Please fill all the fields below for details access
Write Information about





Disclimer: PCDS.CO.IN not responsible for any content, information, data or any feature of website. If you are using this website then its your own responsibility to understand the content of the website

--------- Tutorials ---