Agar full HD movie download free with screenpaly story, dialogue LYRICS and STAR Cast


Watch the movie Agar Online

Story of movie Agar :
  • Read in another language

Agar

blood agar plate
A blood agar plate used to culture bacteria and diagnose infection.
mhi peopleizuyoukan
Culinary usage: Mizu y?kan - a popular Japanese red bean jelly made from agar
Ogonori, the most common red algae used to make agar

Agar (pronounced /?e????r/, sometimes /?????r/) or agar-agar is a jelly-like substance, obtained from red algae.

Agar is a mixture of two components: the linear polysaccharide agarose, and a heterogeneous mixture of smaller molecules called agaropectin. It forms the supporting structure in the cell walls of certain species of algae, and is released on boiling. These algae are known as agarophytes, and belong to the Rhodophyta (red algae) phylum.

Agar has been used as an ingredient in desserts throughout Asia, and also as a solid substrate to contain culture media for microbiological work. Agar can be used as a laxative, an appetite suppressant, a vegetarian substitute for gelatin, a thickener for soups, in fruit preserves, ice cream, and other desserts, as a clarifying agent in brewing, and for sizing paper and fabrics.

The gelling agent in agar is an unbranched polysaccharide obtained from the cell walls of some species of red algae, primarily from tengusa (Gelidiaceae) and ogonori (Gracilaria). For commercial purposes, it is derived primarily from ogonori. In chemical terms, agar is a polymer made up of subunits of the sugar galactose.

Contents

History

 
The structure of an agarose polymer.

Agar may have been discovered in Japan in 1658 by Mino Tar?zaemon (?? ?????), an innkeeper who, according to legend, was said to have discarded surplus seaweed soup and noticed that it gelled later after a winter night's freezing. Over the following centuries, agar became a common gelling agent in several Southeast Asian cuisines.

Agar was first subjected to chemical analysis in 1859 by the French chemist Anselme Payen, who had obtained agar from the marine algae Gelidium corneum.

Beginning in the late 19th century, agar began to be used heavily as a solid medium for growing various microbes. Agar was first described for use in microbiology in 1882 by the German microbiologist Walther Hesse, an assistant working in Robert Koch's laboratory, on the suggestion of his wife Fannie Hesse. Agar quickly supplanted gelatin as the base of microbiological media, due to its higher melting temperature, allowing microbes to be grown at higher temperatures without the media liquefying.

With its newfound use in microbiology, agar production quickly increased. This production centered on Japan, which produced most of the world's agar until World War II. However, with the outbreak of World War II, many nations were forced to establish domestic agar industries in order to continue microbiological research. Around the time of World War II, approximately 2,500 tons of agar were produced annually. By the mid-1970s, production worldwide had increased dramatically to approximately 10,000 tons each year. Since then, production of agar has fluctuated due to unstable and sometimes over-utilized seaweed populations.

Etymology

The word "agar" comes from agar-agar, the Malay name for red algae (Gigartina, Gracilaria) from which the jelly is produced. It is also known as Kanten (Japanese: ??) (from the phrase kan-zarashi tokoroten (????) or “cold-exposed agar”), Japanese isinglass, Ceylon moss or Jaffna moss. Gracilaria lichenoides is specifically referred to as agal-agal or Ceylon agar.[17]

Composition

Agar consists of a mixture of two polysaccharides: agarose and agaropectin, with agarose making up about 70% of the mixture.[18] Agarose is a linear polymer, made up of repeating units of agarobiose, a disaccharide made up of D-galactose and 3,6-anhydro-L-galactopyranose.[19] Agaropectin is a heterogeneous mixture of smaller molecules that occur in lesser amounts, and is made up of alternating units of D-galactose and L-galactose heavily modified with acidic side-groups, such as sulfate and pyruvate.[20][18][19]

Agar exhibits hysteresis, melting at 85 °C (358 K, 185 °F) and solidifying from 32–40 °C (305–313 K, 90–104 °F).[21] This property lends a suitable balance between easy melting and good gel stability at relatively high temperatures. Since many scientific applications require incubation at temperatures close to human body temperature (37 °C), agar is more appropriate than other solidifying agents that melt at this temperature, such as gelatin.

Uses

Culinary

 
Sago at gulaman in Filipino cuisine is made from agar (gulaman), pearl sago, and fruit juice flavored with pandan

Agar-agar is a natural vegetable gelatin counterpart. White and semi-translucent, it is sold in packages as washed and dried strips or in powdered form. It can be used to make jellies, puddings, and custards. For making jelly, it is boiled in water until the solids dissolve. Sweetener, flavouring, colouring, fruit or vegetables are then added and the liquid is poured into molds to be served as desserts and vegetable aspics, or incorporated with other desserts, such as a jelly layer in a cake.

Agar-agar is approximately 80% fiber, so it can serve as an intestinal regulator. Its bulking quality has been behind fad diets in Asia, for example the kanten (the Japanese word for agar-agar[4]) diet. Once ingested, kanten triples in size and absorbs water. This results in the consumers feeling fuller. This diet has recently received some press coverage in the United States as well. The diet has shown promise in obesity studies.[22]

One use of agar in Japanese cuisine (Wagashi) is anmitsu, a dessert made of small cubes of agar jelly and served in a bowl with various fruits or other ingredients. It is also the main ingredient in mizu y?kan, another popular Japanese food.

In Philippine cuisine, it is used to make the jelly bars in the various gulaman refreshments or desserts such as sago gulaman, buko pandan, agar flan, halo-halo, and the black and red gulaman used in various fruit salads.

In Vietnamese cuisine, jellies made of flavored layers of agar agar, called th?ch, are a popular dessert, and are often made in ornate molds for special occasions. In Indian cuisine, agar agar is known as "China grass" and is used for making desserts. In Burmese cuisine, a sweet jelly known as kyauk kyaw [t?a??t???] is made from agar.

In Russia, it is used in addition or as a replacement to pectin in jams and marmalades, as a substitute to gelatin for its superior gelling properties, and as a strengthening ingredient in souffles and custards. Another use of agar-agar is in ptich'ye moloko (bird's milk), a rich jellified custard (or soft meringue) used as a cake filling or chocolate-glazed as individual sweets. Agar-agar may also be used as the gelling agent in gel clarification, a culinary technique used to clarify stocks, sauces, and other liquids.

Mexico has traditional candies made out of Agar gelatin, most of them in colorful, half-circle shapes that resemble a melon or watermelon fruit slice, and commonly covered with sugar. They are known in Spanish as Dulce de Agar (Agar sweets)

Agar-agar is an allowed nonorganic/nonsynthetic additive used as a thickener, gelling agent, texturizer, moisturizer, emulsifier, flavor enhancer, and absorbent in certified organic foods.[23]

Microbiology

 
100mm diameter Petri dishes containing agar gel for bacterial culture

An agar plate or Petri dish is used to provide a growth medium using a mix of agar and other nutrients in which microorganisms, including bacteria and fungi, can be cultured and observed under the microscope. Agar is indigestible for many organisms so that microbial growth does not affect the gel used and it remains stable. Agar is typically sold commercially as a powder that can be mixed with water and prepared similarly to gelatin before use as a growth medium. Other ingredients are added to the agar to meet the nutritional needs of the microbes. Many specific formulations are available, because some microbes prefer certain environmental conditions over others. Agar is often dispensed using a sterile media dispenser.

Motility assays

As a gel, an agar or agarose medium is porous and therefore can be used to measure microorganism motility and mobility. The gel's porosity is directly related to the concentration of agarose in the medium, so various levels of effective viscosity (from the cell's "point of view") can be selected, depending on the experimental objectives.

A common identification assay involves culturing a sample of the organism deep within a block of nutrient agar. Cells will attempt to grow within the gel structure. Motile species will be able to migrate, albeit slowly, throughout the gel and infiltration rates can then be visualized, whereas non-motile species will show growth only along the now-empty path introduced by the invasive initial sample deposition.

Another setup commonly used for measuring chemotaxis and chemokinesis utilizes the under-agarose cell migration assay, whereby a layer of agarose gel is placed between a cell population and a chemoattractant. As a concentration gradient develops from the diffusion of the chemoattractant into the gel, various cell populations requiring different stimulation levels to migrate can then be visualized over time using microphotography as they tunnel upward through the gel against gravity along the gradient.

Plant biology

 
Physcomitrella patens plants growing axenically in vitro on agar plates (Petri dish, 9 cm diameter).

Research grade agar is used extensively in plant biology as it is supplemented with a nutrient and vitamin mixture that allows for seedling germination in Petri dishes under sterile conditions (given that the seeds are sterilized as well). Nutrient and vitamin supplementation for Arabidopsis thaliana is standard across most experimental conditions. Murashige & Skoog (MS) nutrient mix and Gamborg's B5 vitamin mix in general are used. A 1.0% agar/0.44% MS+vitamin dH2O solution is suitable for growth media between normal growth temps.

When using agar, within any growth medium, it is important to know that the solidification of the agar is pH-dependent. The optimal range for solidification is between 5.4-5.7.[24] Usually, the application of KOH is needed to increase the pH to this range. A general guideline is about 600 µl 0.1M KOH per 250 ml GM. This entire mixture can be sterilized using the liquid cycle of an autoclave.

This medium nicely lends itself to the application of specific concentrations of phytohormones etc. to induce specific growth patterns in that one can easily prepare a solution containing the desired amount of hormone, add

Release Date :
12:00am on Saturday 1st January 1977

Watch movie Agar online on Amazon

Watch movie Agar online

Watch The Movie On Prime


Agar"/

Download latest Movie from bollywood


The valuable critic review of movie Agar is availeble for download
As PCDS members You can use other service that depends on your credit balance and availability of movie. Credit balance earnig is very easy you can earn by using service of the pcds or let to your friends know about this.

Request for Download movie Agar

Are you looking for work in Movie in the bollywood ?
Type of works in bollywood like Actor,  Actress, singer, director, scriptwriter, Model, Play Back Singers, Script writer, Dialogue Writer, Audiography, Background Music, Costume Designer, Choreographer or junior artist
Then Fill The below form for get the chance in bollywood Industries as newcomers
Please fill all the fields below for details access
Write Information about





Disclimer: PCDS.CO.IN not responsible for any content, information, data or any feature of website. If you are using this website then its your own responsibility to understand the content of the website

--------- Tutorials ---